

Center for Scientific Computation And Mathematical Modeling

University of Maryland College Park

Critical Thresholds in Eulerian Dynamics

Eitan Tadmor

Center for Scientific Computation and Mathematical Modeling (CSCAMM) Department of Mathematics, Institute for Physical Science & Technology

University of Maryland

Eulerian dynamics & questions of regularity

• Newton:
$$\frac{d^2 \mathbf{x}(t)}{dt^2} = \mathbf{F}, \qquad \mathbf{x} = (x_1, \dots, x_N)^\top \in \mathsf{IR}^N$$

• Eulerian description: $\mathbf{u}(\mathbf{x},t) = \frac{d\mathbf{x}}{dt} = (u_1(\mathbf{x},t),\ldots,u_N(\mathbf{x},t))^\top$

$$\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \mathbf{F}$$
: $\frac{\partial u_i}{\partial t} + \sum_{k=1}^N u_k \frac{\partial u_i}{\partial x_k} = F_i, \quad i = 1, 2, \dots, N$

- \odot velocity $\mathbf{u}(\mathbf{x},t)$ is governed by forcing $\mathbf{F}=\mathbf{F}[\mathbf{u},\nabla_{\mathbf{x}}\mathbf{u},...]$
- Q.: whether smooth solutions develop singularity in a finite time?

Answer — possible scenarios:

No – global smooth solutions: $u(\cdot, t)$ remains smooth for all time

Yes – finite time breakdown: shocks, singularities,.. $|\nabla_{\mathbf{x}} \mathbf{u}(\cdot, t_c)| \uparrow \infty$

Critical threshold phenomena: regularity depends on initial configurations

The prototype example of Euler-Poisson equations

$$\rho_t + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) = 0$$

$$(\rho \mathbf{u})_t + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = \rho \mathbf{F}$$

 \odot Eulerian dynamics: $\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \mathbf{F}$

• Density $\rho := \rho(\mathbf{x}, t)$; velocity $\mathbf{u} := \mathbf{u}(\mathbf{x}, t)$; Forcing $\mathbf{F} = \mathbf{F}[\mathbf{u}, \nabla_{\mathbf{x}} \mathbf{u}, ...]$

$$\mathbf{F} = \underbrace{\overbrace{-\kappa \nabla_{\mathbf{x}} \phi}}_{-\kappa \nabla_{\mathbf{x}} \phi} + \frac{A}{\rho} \underbrace{\overbrace{\nabla_{\mathbf{x}} p(\rho)}}_{p(\rho)} + \text{relaxation} + \text{dissipation} + \dots$$

- Poissonian potential $\phi := \phi(\mathbf{x}, t) : -\Delta \phi = \rho + \text{background}$
- Applications: semi-conductors, evolution of galaxies, ...

 $\kappa \neq 0$ — a scaled Debye constant:

 $\kappa > 0$ repulsive forcing; $\kappa < 0$ attractive forcing

The example of Euler-Poisson equations

$$\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = -\kappa \nabla_{\mathbf{x}} \phi + \frac{A}{\rho} \nabla_{\mathbf{x}} p(\rho)$$

○ $\kappa = 0$: isentropic model of compressible Euler equations finite time blowup — one-dimensional shocks (Lax '72)

 \odot State of the theory (prototype):

Results	Method	initial data
Local regularity $t \in [0, T]$	Energy method	all $(\rho_0 > 0, u_0) \in H^s$
Weak solution $t < \infty$	compactness	all $(\rho_0 > 0, u_0) \in BV$
Global regularity $t < \infty$	energy method	small perturbation
Finite time blowup $t = t_c$	global invariant	large initial data
Critical Threshold	spectral dynamics	'generic' initial data

 \odot A partial list of the experts:

G.-Q. Chen, Donatelli, Engelberg, Gamblin, Y. Guo, T. Luo, Makino, Marcati, Markowich, Natalini, Perthame, Schmeiser, Ukai, D. Wang, Z. Xin, ...

One-dimensional Euler-Poisson equation

$$\rho_t + (\rho u)_x = 0, \quad x \in \mathrm{IR},$$
$$u_t + uu_x = -\kappa \phi_x$$

— smooth initial data: $\rho(x, 0) = \rho_0(x) > 0$, $u(x, 0) = u_0(x)$

- no pressure; zero background: $-\phi_{xx} = \rho$
- Global smooth solution if

$$u_0'(x) > -\sqrt{2\kappa\rho_0(x)}, \quad \forall x \in \mathsf{IR}$$

- Breakdown: if \exists an x s.t. $u_0'(x) \leq -\sqrt{2\kappa\rho_0(x)}$
- \Rightarrow regularity breaks down at a finite $t = t_c$: $u(\cdot, t_c) \downarrow -\infty$
- Burgers equation $\kappa = 0$: 'generic' breakdown unless $u_0(x) \uparrow \forall x$
- Critical threshold $(\kappa > 0)$:

Global solutions for large set of 'generic' initial configurations

Critical threshold in one-dimensional Euler-Poisson

• Mass equation:
$$\rho_t + (\rho u)_x = 0$$
 reads, $d := u_x$
 $(\partial_t + u\partial_x)\rho + u_x\rho = 0 \Longrightarrow \qquad \rho' + d\rho = 0$ (1)
• ∂_x (Balance equation: $u_t + uu_x = \kappa\phi_x$) reads
 $(\partial_t + u\partial_x)u_x + u_x^2 = \kappa\rho \Longrightarrow \qquad d' + d^2 = \kappa\rho$ (2)

• Linear stability is of no help:
$$\lambda \begin{pmatrix} 0 & 0 \\ \kappa & 0 \end{pmatrix} = 0$$

• Manipulate:
$$\rho \times (2) - d \times (1) = \kappa \rho^2 \Longrightarrow \left(\frac{d}{\rho}\right)' = \frac{\rho d' - d\rho'}{\rho^2} = \kappa$$

$$\odot$$
 Decoupling: $\frac{d}{\rho} = \kappa t + \frac{u'_0}{\rho_0} \implies d' + d^2 = \frac{\kappa d}{\kappa t + u'_0/\rho_0}$

• Nonlinear resonance: $u_x = d = \frac{u'_0 + \kappa \rho_0 t}{1 + u'_0 t + \kappa \rho_0 \frac{t^2}{2}}$

• Geometry of characteristics: straight lines ($\kappa = 0$) \rightarrow parabolas ($\kappa > 0$)

More on one-dimensional Euler-Poisson $u_t + uu_x = F$

• Adding pressure: $F[u, u_x] = -\kappa \phi_x + \frac{A}{\rho} (\rho^{\gamma})_x, \ \gamma \ge 1$

<u>Thm</u> (w/Dongming Wei) Global smooth solution iff

$$u_0'(x) \ge -\sqrt{2K\rho_0(x)} + \sqrt{A\gamma} \frac{|\rho_0'(x)|}{\left(\sqrt{\rho_0(x)}\right)^{3-\gamma}}, \quad K = K(\kappa) \sim \kappa.$$

Poisson and pressure compete: global regularity vs. breakdown

- Adding non-zero background: $-\phi_{xx} = \rho c$: $|u'_0(x)| \le \sqrt{\kappa (2\rho_0(x) c)}$
 - Adding relaxation: $u_t + uu_x = -\kappa \phi_x \frac{u}{\varepsilon}$ weak vs. strong(= monotonic) relaxation depending on ε vs. $1/\sqrt{\kappa}$
 - Semi-classical limit NLSP: $i\epsilon\psi_t^{\epsilon} = -\frac{\epsilon^2}{2}\Delta_x\psi^{\epsilon} \kappa\left(\Delta_x^{-1}(|\psi^{\epsilon}|^2 c)\right)\psi^{\epsilon}$
 - WKB ansatz $\psi^{\epsilon} = A_0^{\epsilon} e^{iS^{\epsilon}/\epsilon}$: $u := \nabla S^{\epsilon}, \ \rho := |A^{\epsilon}|^2$

$$\rho_t + \nabla \cdot (\rho u) = 0, \quad u_t + u \cdot \nabla u = \kappa \nabla \Delta_x^{-1} (\rho - c) + \frac{\epsilon^2}{2} \left[\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}} \right]$$

• Classical limit with 1D sub-critical data: $|S_0''(x)| \le \sqrt{\kappa(2|A_0(x)|^2 - c)}$

Plan of this talk

- I. Multidimensional models: spectral dynamics
- II. 2D example: Poisson forcing
 - Critical threshold for 2D restricted Euler-Poisson
 - 2D viscosity
- III. 2D examples cont'd: Rotation forcing
 - Rotation prevents finite time breakdown
 - Near periodic solutions for shallow-water eq's

The 2D example of Viscosity forcing

- IV. 3D and 4D examples: Pressure forcing
 - The 3D restricted Euler equations and ...
 - A surprising 4D scenario of critical threshold

Joint works with Bin Cheng(Maryland), S. Engelberg (Jerusalem), Hailiang Liu (Iowa State), Dongming Wei (Maryland)

I. The multidimensional case — Spectral Dynamics

- N = 1 Key issue: control of the scalar $d = u_x$
- Critical Threshold phenomena for multidimensional systems: Velocity $\mathbf{u} = (u_1, \dots, u_N)^{\top}$; Forcing $\mathbf{F} = \{F_i[\mathbf{u}, \nabla_{\mathbf{x}}\mathbf{u}, \dots]\}_{i=1}^N$

$$\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \mathbf{F}[\mathbf{u}, \nabla_x \mathbf{u}, \dots]$$

Key point: balance of nonlinearities: $\mathbf{F}=\mathbf{F}[\mathbf{u},\nabla_{\mathbf{x}}\mathbf{u},...]$ vs. $\mathbf{u}\cdot\nabla_{\mathbf{x}}\mathbf{u}$

Key issue: control of the matrix $D := \left(\frac{\partial u_i}{\partial x_j}\right), i, j = 1, 2, ..., N$

$$D_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} D + D^2 = \nabla_{\mathbf{x}} \mathbf{F}, \qquad \nabla_{\mathbf{x}} \mathbf{F} = \left(\frac{\partial F_i}{\partial x_j}\right)_{i,j=1,\dots,N}$$

• Spectral dynamics: $\lambda(D)$ an eigenvalue w/eigenpair $\langle \ell, r \rangle = 1$

$$\partial_t \lambda_i + \mathbf{u} \cdot \nabla_{\mathbf{x}} \lambda_i + \lambda_i^2 = \langle \nabla_{\mathbf{x}} \mathbf{F} \ell_i, r_i \rangle$$
 $i = 1, 2, \dots, N$

— Difficult interaction of eigenstructure–forcing \cdots $\langle \nabla_{\mathbf{x}} \mathbf{F} \ell, r \rangle$

II. Multidimensional Euler-Poisson: $\mathbf{F} = -\kappa \nabla \phi, \ -\Delta \phi = \rho$

• Poisson forcing: $\nabla_{\mathbf{x}} \mathbf{F} = -\kappa \partial_i \partial_j \phi = \kappa \partial_i \partial_j \Delta^{-1}[\rho] =: \kappa R[\rho]$

$$\underline{R[\rho]} = \partial_i \partial_j \Delta^{-1} \rho = \frac{\rho}{N} \delta_{ij} \underbrace{+ \int_{\mathbb{R}^N} \frac{|x-y|^2 \delta_{ij} - N(x_i - y_i)(x_j - y_j)}{|x-y|^{N+2}} \rho(y) dy}_{|x-y|^{N+2}}$$

- Restricted Euler-Poisson: $R[\rho] = \frac{\rho}{N} I_{N \times N} + \dots \rightarrow \frac{\rho}{N} I_{N \times N}$
- Retaining the local part of the global term R[
 ho]; more later...
- Spectral dynamics scalar forcing: $\langle \nabla_{\mathbf{x}} \mathbf{F} \ell_i, r_i \rangle = \kappa \langle \mathbf{R}[\rho] \ell_i, r_i \rangle \to \kappa \frac{\rho}{N}$

$$\partial_t \lambda_i + \mathbf{u} \cdot \nabla_{\mathbf{x}} \lambda_i + \lambda_i^2 = \kappa \frac{\rho}{N}, \quad i = 1, \cdots, N$$

... and ρ is determined by mass equation: $\rho_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \rho + \rho \nabla_{\mathbf{x}} \cdot \mathbf{u} = 0$:

$$\partial_t \rho + \mathbf{u} \cdot \nabla_{\mathbf{x}} \rho + \rho \sum_{j=1}^N \lambda_j = 0$$

 \odot Turn to the 2D N = 2-case....

Critical threshold in 2D Restricted Euler-Poisson (REP)

 \odot spectral dynamics along particle path:

$$\lambda_i' + \lambda_i^2 = \kappa \frac{\rho}{N}, \qquad \{\cdot\}' := \partial_t + \mathbf{u} \cdot \nabla_\mathbf{x}$$

$$(\mathbf{1}): \quad \lambda_1' + \lambda_1^2 = \kappa \frac{\rho}{2} \qquad (\mathbf{2}): \quad \lambda_2' + \lambda_2^2 = \kappa \frac{\rho}{2}$$

- \odot Take the difference let $\eta := \lambda_2 \lambda_1$ be the spectral gap –
- $(\#2) (\#1) \longrightarrow$: $\eta' + \eta \times (\lambda_1 + \lambda_2) = 0$
- mass eq.: $\rho_t + \mathbf{u} \cdot \nabla_x \rho + \rho \cdot div_x \mathbf{u} = 0 \rightarrow : \rho' + \rho \times (\lambda_1 + \lambda_2) = 0$

$$\left(\frac{\eta}{\rho}\right)' = 0$$

 \odot 2D spectral invariant: $\frac{\lambda_2 - \lambda_1}{\rho} = Const.$ along particle path

Critical threshold in 2D Restricted Euler-Poisson (REP) <u>Thm</u>(w/H. Liu)

The solution of 2D REP remains smooth for all time iff

 $d_0(x) > g(\rho_0(x), \eta_0(x)) \quad \forall x \in \mathbb{R}^2$

• Critical surface: $g(\rho,\eta) := sgn(\eta^2 - 2k\rho)\sqrt{\eta^2 - 2\kappa\rho + 2\kappa\rho} \ln\left(\frac{2\kappa}{\eta^2}\right)$

 \odot Dependence on the spectral gap $\eta := \lambda_1 - \lambda_2$, $d := \lambda_1 + \lambda_2$

⊙ Example: Solutions of the 2D REP remains smooth for all time if both $\lambda_i(0)$ are complex: $Im(\lambda_i(\alpha, 0)) \neq 0$, i = 1, 2.

• Non-zero background $-\Delta \phi = \rho - c$:

Critical threshold consists of union of several critical surfaces

OPEN QUESTIONS

• Q. What happens with the full Euler-Poisson $\nabla_{\mathbf{x}} \mathbf{F} = R[\rho]$?

 \odot On the transport of the Riesz matrix $R[\rho]$

- Q. Adding pressure competition with Poisson forcing
- Q. Who plays the role of spectral gap in 3D?

⊙ 3D REP spectral invariant:
$$\frac{(\lambda_1 - \lambda_2)(\lambda_2 - \lambda_3)(\lambda_3 - \lambda_1)}{\rho^2} = Const.$$

III. 2D example: rotation prevents finite time breakdown

2D:
$$\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \frac{1}{\alpha} J \mathbf{u}, \quad J := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

• Spectral dynamics: $\lambda_i = \lambda_i(D)$, $D = \begin{pmatrix} \partial_1 u_1 & \partial_2 u_1 \\ \partial_1 u_2 & \partial_2 u_2 \end{pmatrix}$

• Forcing $\mathbf{F} = \frac{1}{\alpha} J \mathbf{u}$ is local but non-isotropic: $\langle \nabla_{\mathbf{x}} \mathbf{F} \ell, r \rangle \propto \langle J D \ell, r \rangle$

$$(\partial_t + \mathbf{u} \cdot \nabla_{\mathbf{x}})\lambda_1 + \lambda_1^2 = \frac{\lambda_1}{\alpha} \times \langle \ell_1, \ell_2 \rangle$$
$$(\partial_t + \mathbf{u} \cdot \nabla_{\mathbf{x}})\lambda_2 + \lambda_2^2 = -\frac{\lambda_2}{\alpha} \times \langle \ell_1, \ell_2 \rangle$$

 $\odot \langle \ell_1, \ell_2 \rangle = \frac{\omega}{\eta}, \quad \eta := \lambda_2 - \lambda_1$ is the spectral gap; $(\omega = 0 \leftrightarrow D \text{ symmetric})$

· Difference
$$(\partial_t + \mathbf{u} \cdot \nabla_{\mathbf{x}})\eta + d\eta = -\frac{d\omega}{\alpha\eta} \dots$$

III. 2D example: rotation prevents finite time breakdown

$$2D: \quad \mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \frac{1}{\alpha} J \mathbf{u}, \quad J := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

• Spectral dynamics: $\lambda_i = \lambda_i(D), \quad D = \begin{pmatrix} \partial_1 u_1 & \partial_2 u_1 \\ \partial_1 u_2 & \partial_2 u_2 \end{pmatrix}$

• Forcing $\mathbf{F} = \frac{1}{\alpha} J \mathbf{u}$ is local but non-isotropic; $\langle \nabla_{\mathbf{x}} \mathbf{F} \ell, r \rangle \propto \langle J D \ell, r \rangle$

$$(\partial_t + \mathbf{u} \cdot \nabla_\mathbf{x})\lambda_1 + \lambda_1^2 = \frac{\lambda_1}{\alpha} \times \langle \ell_1, \ell_2 \rangle$$
$$(\partial_t + \mathbf{u} \cdot \nabla_\mathbf{x})\lambda_2 + \lambda_2^2 = -\frac{\lambda_2}{\alpha} \times \langle \ell_1, \ell_2 \rangle$$

 $\odot \langle \ell_1, \ell_2 \rangle = \frac{\omega}{\eta}, \quad \eta := \lambda_2 - \lambda_1$ is the spectral gap; $(\omega = 0 \leftrightarrow D \text{ symmetric})$

· Difference $(\partial_t + \mathbf{u} \cdot \nabla_{\mathbf{x}})\eta + d\eta = -\frac{d\omega}{\alpha\eta}$ and sum $d := \lambda_1 + \lambda_2 \dots$

(1)
$$\eta' + d\eta = -\frac{d\omega}{\alpha\eta}$$
 (2) $d' + \frac{d^2 + \eta^2}{2} = -\frac{\omega}{\alpha}$ (3) $\omega' + d\omega = \frac{d}{\alpha}$

Critical thresholds for 2D rotation: $\mathbf{u}_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = \frac{1}{\alpha} J \mathbf{u}$

 \odot Two spectral invariants: $\varphi = 1 - \alpha \omega, \ \varphi' = d\varphi$

(1)
$$\frac{2\alpha\omega + \alpha^2\eta^2 - 1}{2\alpha\omega - \alpha^2\omega^2 - 1} = \text{Const.} > 0, \quad \text{(2)} \quad \frac{d^2 - \eta^2}{1 - \alpha\omega} = \text{Const.}$$

Thm (w/H. Liu) Rotation prevents finite time breakdown for

subcritical data:

$$2\alpha\omega_0 + \alpha^2\eta_0^2 < 1$$

$$\odot$$
 if $\eta_0^2 > 0$: global solution if $\alpha < \alpha_+^c := -\omega_0 + \sqrt{\omega_0^2 + \eta_0^2}$

 \odot if $\eta_0^2 < 0$: global solution if $\alpha < \alpha_-^c$ or $\alpha > \alpha_+^c$

⊙ The flow map is 2πα periodic in time ... Lagrangian point of view
 ⊙ Conservation: E(t) := ∫ ρ(·,t)|u(·,t)|²dx = E₀, ρ_t + ∇_x(ρu) = 0

Adding 'pressure': the 2D rotational shallow-water eq's

$$\mathbf{u}_{t} + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} + \underbrace{\mathbf{g} \nabla_{\mathbf{x}} h}_{g \nabla_{\mathbf{x}} h} = \underbrace{\mathbf{f} J \mathbf{u}}_{f J \mathbf{u}}; \quad \underbrace{\mathbf{mass quation}}_{h_{t} + \nabla_{\mathbf{x}} (h \mathbf{u}) = 0};$$

• scaling — Froude #: $\beta = \frac{U}{\sqrt{gH}}$ Rossby #: $\alpha = \frac{U}{fL}$
 $h_{t} + \mathbf{u} \cdot \nabla_{\mathbf{x}} h + (\frac{1}{\beta} + h) \nabla_{\mathbf{x}} \mathbf{u} = 0$
 $\mathbf{u}_{t} + \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} + \frac{1}{\beta} \nabla_{\mathbf{x}} h = \frac{1}{\alpha} J \mathbf{u}$

• Assumption – rotation dominated flows: $\delta := \frac{\alpha}{\beta^2} \ll 1$

<u>Thm</u>(w/Bin Cheng) For sub-critical initial data: there exists a smooth, near periodic solution $t \lesssim |\log(\delta)|$:

$$\|\mathbf{u}_{lpha,eta}(\cdot,t) - \mathbf{u}_{lpha,0}^{periodic}(\cdot,t)\|_{H^s} \lesssim \delta rac{e^{Ct} - 1}{1 - \delta e^{Ct} \|\mathbf{u}_0\|_{H^s+3}}$$

 \odot Rotation delays finite-time breakdown; (no smallness of $\alpha \ll 1$)

Babin, Constantin, Chemin, Gallagher, Mahalov, Majda, Nicolaenko, Saint-Raymond, ...

2D Burgers': $\mathbf{u}_t^{\epsilon} + \mathbf{u}^{\epsilon} \cdot \nabla_{\mathbf{x}} \mathbf{u}^{\epsilon} = \epsilon \Delta \mathbf{u}^{\epsilon}, \quad \mathbf{u} = (u_1, u_2)^{\top}$

• Once more — it is the spectral gap:

 $\left\|\eta(\nabla_{\mathbf{x}}\mathbf{u}^{\epsilon})(\cdot,t)\right\|_{L^{1}} \leq \left\|\eta(\nabla_{\mathbf{x}}\mathbf{u}^{\epsilon})(\cdot,0)\right\|_{L^{1}}$

• $||u^{\epsilon}(\cdot,t)||_{BV} \leq Const_0 \Longrightarrow \exists \lim \mathbf{u}^{\epsilon} = \bar{\mathbf{u}}$

$$\frac{\partial}{\partial t}u_1^{\epsilon} + u_1^{\epsilon}\frac{\partial}{\partial x_1}u_1^{\epsilon} + u_2^{\epsilon}\frac{\partial}{\partial x_2}u_1^{\epsilon} = \epsilon\Delta u_1^{\epsilon}$$

$$\frac{\partial}{\partial t}u_2^{\epsilon} + u_1^{\epsilon}\frac{\partial}{\partial x_1}u_2^{\epsilon} + u_2^{\epsilon}\frac{\partial}{\partial x_2}u_2^{\epsilon} = \epsilon\Delta u_2^{\epsilon}$$

Q. What is the dynamics of $\bar{\mathbf{u}}?$

A1.
$$\mathbf{u}_0 = \nabla_{\mathbf{x}} S_0$$
: $\bar{\mathbf{u}} = \nabla_x \left(\text{viscosity sln. of 2-D Eikonal } S_t + |\nabla S|^2 = 0 \right)$:
 L^1 spectral gap, $\eta(\partial_i \partial_j S)$: $\left\| \sqrt{(\Delta S)^2 - 4(S_{xx}S_{yy} - S_{xy}^2)(\cdot, t)} \right\|_{L^1_{loc}(R^2)}$

 \bullet General \mathbf{u}_0 : a proper weak formulation for the limit?

IV. Euler and Restricted Euler

• Incompressible Euler equations: $\mathbf{u}_t + \mathbf{u} \cdot \nabla_x \mathbf{u} = -\nabla_x p$

 \odot It's this pressure again.... $-\Delta p = div \mathbf{u} \cdot \nabla_{\mathbf{x}} \mathbf{u} = trace(\nabla_{\mathbf{x}} \mathbf{u})^2$

$$\nabla_x \mathbf{F} = -\partial_i \partial_j p = \partial_i \partial_j \Delta^{-1}[trace(D^2)] = \mathbf{R}[trace(D^2)]$$

- Full Euler equations: $D_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} D + D^2 = R[trace(D^2)]$
- Restricted Euler model: Léorat, 1975, Vieillefosse, 1982:

$$R[trace(D^2)] \to \frac{trace(D^2)}{N} I_{N \times N} : \quad D_t + \mathbf{u} \cdot \nabla_{\mathbf{x}} D + D^2 = \frac{traceD^2}{N} I_{N \times N}.$$

○ Retains incompressibility: $(\partial_t + \mathbf{u} \cdot \nabla_x) traceD = 0$

- Why this model?- Vieillefosse, Cantwell, Shraimann, Pumir, Siggia, Pelz,
- localized model of Euler/Navier-Stokes equations
- —describe the local (blow-up?) topology of Euler eq's (Beale-Kato-Majda - $\|\omega(\cdot, t)\|_{L^1([0,T_c-],L^\infty)} \uparrow \infty$)
- capture certain statistical features of physical flow
- restricted model for incompressible MHD

Spectral Dynamics for restricted Euler model

The nonlinear dependence: $\lambda = \lambda(D)$

• Spectral dynamics: $D' + D^2 = \frac{trace(D^2)}{N} I_{N \times N}$ $' \equiv \partial_t + \mathbf{u} \cdot \nabla_\mathbf{x}$

$$\lambda'_i + \lambda_i^2 = \frac{1}{N} \sum_{k=1}^N \lambda_k^2, \quad i = 1, \cdots, N$$

• Spectral invariants: $(\lambda_i - \lambda_j)' + (\lambda_i - \lambda_j)(\lambda_i + \lambda_j) = 0$ $\left(\sum_{i=1}^{n} \ln(\lambda_i - \lambda_j)\right)' = -\sum_{i=1}^{n} (\lambda_i + \lambda_j) = 0$

 \odot Incompressibility: $\sum_{i=1}^{N} \lambda_i(t) = 0$

Q. Seek
$$\prod_{(i,j)\in\mathcal{I}} (\lambda_i(t) - \lambda_j(t)) = \text{Const.} (i,j) \in \mathcal{I} \text{ such that } \dots$$

$$\sum_{(i,j)\in\mathcal{I}} (\lambda_i + \lambda_j) \propto \sum_k \lambda_k \ldots = 0$$

Ans. $\#{\mathcal{I}} \ge \left[\frac{N}{2}\right]$ independent spectral invariants.

3D finite time breakdown

• 3D spectral invariant: $(\lambda_1 - \lambda_2)(\lambda_2 - \lambda_3)(\lambda_3 - \lambda_1) = Const.$

indeed $\{(1,2),(2,3),(3,1)\} \in \mathcal{I}:$

$$\lambda_1 + \lambda_2 + \lambda_2 + \lambda_3 + \lambda_3 + \lambda_1 = 2(\lambda_1 + \lambda_2 + \lambda_3) = 0$$

<u>Thm</u> 3D Global solutions iff $\Lambda_0 := (\lambda_{10}, \lambda_{20}, \lambda_{30}) = (1, 1, -2) \times a(x)$

Dilation: $\Lambda_0 \times a(x)$; permutation: $\Lambda_0 = (1, -2, 1), (-2, 1, 1) \times a(x)$

Finite time breakdown at finite time, t_c , where $\lambda_i \sim \frac{1}{t-t_c}$.

- 3D RE blow-up is generic except for one point projection
- Vieillefosse, ...

Critical thresholds for 4D restricted Euler

• Two spectral invariants: $(\lambda_1 - \lambda_2)(\lambda_3 - \lambda_4) \& (\lambda_1 - \lambda_3)(\lambda_2 - \lambda_4)$ {(1,2), (3,4)} and {(1,3), (2,4)} $\in \mathcal{I}$: $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 0$ <u>Thm</u> (w/Hailiang Liu and Dongming Wei)

Global smooth solutions iff $\Lambda_0 := (\lambda_{10}, \lambda_{20}, \lambda_{30}, \lambda_{40}) \in \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$,

 Γ_3 : real eigenvalues $\Lambda_0 = (-1+s, -1, -1, 3-s) \times a(x), \ 0 \le s \le 4$

- Γ_2 : 1 complex pair + 2 real e.v. $\Lambda_0 = (r+i, r-i, -r, -r) \times a(x)$
- Γ_1 : 2 complex pairs $\Lambda_0 = (r+bi, r-bi, -r+ci, -r-ci) \times a(x), bc \neq 0$

OPEN QUESTIONS

Q. What does the restricted model tell us about the full Euler equations?

Center for Scientific Computation And Mathematical Modeling

University of Maryland College Park

THANK YOU

www.cscamm.umd.edu/~tadmor